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Abstract—Transmission lines are an important component in
electrical engineering, which can be used to guide energy as
well as information. Nonhomogeneous transmission lines, which
have position varying quantities, can be used to design matching
circuit, delay equalizer, filters VLSI interconnections, etc. In anal-
ysis of nonhomogeneous transmission lines, an approach based
on method of moment is used. As a basis function, a constant
function is used and as weighting function we used a delta
function or collocation. In this work, we observed several cases
such as lossless and lossy homogeneous transmission lines with
matching and arbitrary load. These cases verified the algorithm
developed in this work. The second example concerned with
nonhomogeneous transmission lines, whose results conformed
with those given in the literature. The last example consists of
nonhomogeneous transmission lines in form of abruptly changing
transmission lines. This structure is used to design a low pass
filter. The calculated reflection and transmission factor show
almost the same results as given with a commercial available
software.

Keywords—filter, method of moment, nonhomogeneous trans-
mission line, wave impedance

I. INTRODUCTION

Transmission lines are an important component in electrical
engineering, which can be used to guide energy as well
as information. At higher frequencies, radio frequency or
microwave applications, they are designed as signal processing
components, for examples as filters. In the theory of transmis-
sion lines several characteristic quantities (R′, L′, C ′ and G′)
are defined. Nonhomogeneous transmission lines, which have
position varying quantities, can be used to design matching
circuit [1], delay equalizer [2], filters [3], wave shaping [4],
processing of analog signals [5] and VLSI interconnections
[6].
In analysis of nonhomogeneous transmission lines, a governing
differential equation with non constant coefficients is derived,
which can not be solved in the same way like in analysis of
homogeneous transmission lines. There are several approaches
introduced, i.e. expansion of Taylor’s series [7], expansion
of Fourier’s series [8] and application of method of moment
[9]. In this work we use the same approach as described in
[9]. Method of moment is an implementation for solving an
integral equation, in which we have an unknown integrand.
In the method of moment, a basis function is introduced to
describe the unknown voltages or currents. By weighting or
sampling the equation in several position, the integral equation
can be converted into a system of linear equations. The solution
of this matrix is the distribution of voltage and current along
the transmission line. In this work, we observe several cases

such as lossless and lossy homogeneous transmission lines
with matching and arbitrary load. These cases should verify
the algorithm developed in this work. The second example
concerns with nonhomogeneous transmission lines. The last
example consists of nonhomogeneous transmission lines in
form of abruptly changing transmission lines. This structure
is used to design a low pass filter. A computer code based on
MATLAB is developed to calculate the reflection and trans-
mission factor of such nonhomogeneous transmission lines.

II. WAVE EQUATION OF NONHOMOGENEOUS
TRANSMISSION LINES AND ITS SOLUTION

The theory of transmission lines gives the relationships
between the voltage and current along the structure by the
following equations

dV (z)

dz
= −Z ′(z) I(z) (1)

dI(z)

dz
= −Y ′(z)V (z) (2)

with position varying parameters Z ′(z) = R′(z) + jωL′(z)
and Y ′(z) = G′(z) + jωC ′(z).
Eqs. (1) and (2) lead to an nonhomogeneous differential
equation of second order

d2V (z)

dz2
− f(z)

dV (z)

dz
− γ2(z)V (z) = 0 (3)

with f(z) = (dZ ′/dz)Z ′ and γ2 = Z ′Y ′. The solution of
Eq. (3) is not simple, and is available analytically only for
some special functions of Z ′ and Y ′. To give a solution for
the problem, this paper takes the approach gived in [1], i.e.
integrating Eqs. (1) and (2) leads to

Fig. 1. Nonhomogeneous transmission line with source VS and internal
impedance Zi and load ZL.
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V (z) = −
∫ z

0

Z ′(z′) I(z′)dz′ + C1 (4)

I(z) = −
∫ z

0

Y ′(z′)V (z′)dz′ + C2 (5)

The integration constants, C1 and C2, can be derived from the
boundary conditions given in Fig.1, which are

C1 =
ZL

Zi + ZL
VS +

Zi

Zi + ZL

∫ d

0

[
Z′I − ZLY

′V
]
dz′

C2 =
1

Zi + ZL
VS − 1

Zi + ZL

∫ d

0

[
Z′I − ZLY

′V
]
dz′

Eqs. (4) and (5) are integrals of unknown current and
voltage along the transmission line. It is worthy to express the
unknown voltage and current using a combination of simply
integrable functions with unknown amplitudes,

V (z) =

N∑
n=1

Vnfn(z) (6)

I(z) =

N∑
n=1

Ingn(z) (7)

fn and gn are simple known functions, which are called basis
functions, Vn and In are the unknown constants, and N is
the number of approximating functions. In this case, we have
2×N unknowns.
By applying eqs. (6) and (7) into eqs. (4) and (5) we get a
matrix equation(

A B
C D

)(
V
I

)
=

(
ZL

1

)
VS

Zi + ZL
(8)

with the unknown vectors V= [V1 V2 · · · VN ]T and I=
[I1 I2 · · · IN ]T , and known 1 × N matrices A, B, C and D,
whose elements are

An = fn +
ZiZL

Zi + ZL

∫ d

0

Y ′fndz
′ (9)

Bn =

∫ z

0

Z′gndz
′ − Zi

Zi + ZL

∫ d

0

Z′gndz
′ (10)

Cn =

∫ z

0

Y ′fndz
′ − ZL

Zi + ZL

∫ d

0

Y ′fndz
′ (11)

Dn = gn +
1

Zi + ZL

∫ d

0

Z′gndz
′ (12)

In order to calculate the integrals in eqs. (9) to (12) numer-
ically, the transmission line is divided, i.e. discretized, into
N segments. In case of uniform discretization, the segment
length ∆z is equal to d/N . A significant simplification of the
integration can be gained, if we set the basis function in each
segment constant, as also described in [9], or

fn(z) = gn(z) =

{
1 for (n− 1)∆z ≤ z ≤ n∆z
0 otherwise (13)

With the basis function in eq. (13), the integration along 0 to
d or along 0 to z yields to zero except in a small observed
segment n. Furthermore, if the transmission line is discretized
fine enough, i.e. N is large, ∆z becomes small enough, we
can approximate the integration just by a simple multiplication
between the segment length ∆z and the mean value of Z ′ or
Y ′, or just taking the value of Z ′ or Y ′ at the mid point of

the segment zn, so we get the values of An, Bn, Cn and Dn
at the position zm as follow

An(zm) = δmn +
ZiZL

Zi + ZL
Y ′(zn)∆z (14)

Bn(zm) = Z′(zn)Umn∆z − Zi

Zi + ZL
Z′(zn)∆z (15)

Cn(zm) = Y ′(zn)Umn∆z − ZL

Zi + ZL
Y ′(zn)∆z (16)

Dn(zm) = δmn +
1

Zi + ZL
Z′(zn)∆z (17)

zm is the observation position, which can be chosen at the
middle of the segment. To solve the problem uniquely, we
can choose N observation positions, so that the number of
equations is equal to the number unknowns.
δmn is the Kronecker function, and

Umn =

{
1 for m > n
1/2 for m = n
0 for m < n

Which means, if the observation position on the right side of
the integration boundary (m > n), we get the full integration.
If the observation position is located exactly at the middle of
the integration range, it yields a half of the result. And if the
observation position at the left side of the integration range
(m < n), the integration gives the value zero.
This procedure is a type of the method of moment [9], whose
basis function uses pulse function and as test function is delta
function used. This is also called collocation method.

III. RESULTS

In this work, firstly we observe homogeneous transmission
lines with matching and arbitrary loadings. As additional
parameter we use lossless and lossy transmission lines. In the
next example, we study the convergence of the segmentation
in case of nonhomogeneous transmission lines. Furthermore
we analyze a low pass filter as practical implementation of
nonhomogeneous transmission lines.

A. Voltage distribution along homogeneous transmission lines

At first, a 0.6m length homogeneous transmission line is
observed. The transmission line have a constant capacitance
per unit length C ′ = 66.7 pF and inductance per unit length
L′ = 0.167 µH, so that a wave impedance of Zo = 50 Ω
is obtained. The transmission line is connected with a load
of ZL = 50 Ω, and excited by a voltage source VS = 1V
with a frequency of f = 1 GHz. In this example, we set
G′ = 0 and vary the value of resistance per unit length R′.
Fig. 2 shows voltage distribution along the transmission line
for different losses. For lossless case, we see a constant curve,
which means there is no standing wave observed, the value of
voltage standing wave ration (VSWR) is 1. We do not have
any reflected waves. For lossy cases (R′ > 0), the propagating
waves experience attenuation along the transmission line.
Fig. 2 illustrates, the larger the resistance per unit length, the
smaller the amplitude of the voltage apart from the source.
Interestingly, in case of higher losses, for this ’matching’ con-
dition, we observe standing wave in form of small ripples. Such
ripples must originate from superposition between incident and
reflected waves. In this case, reflections indeed happen. With
losses (R′ 6= 0), the value of the wave impedance is no longer
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Fig. 2. Voltage distribution along transmission line with matching loading
in dependence on resistance per unit length R′.

50 Ω. For example, with R′ = 250 Ω/m, we get a complex
wave impedance of (50.3864−j5.9196) Ω. This yields together
with the load ZL = 50 Ω a reflection factor of |r| = 0.059, or
a VSWR of 1.1254.
Now, the load is replaced with an impedance ZL = 20 Ω. On
a wave impedance of 50 Ω, this leads to a reflection factor
r = −0.4286 or VSWR= 2.5. For lossless case in Fig. 3, the
standing wave pattern does not change along the transmission
line, with a maximal voltage of Vmax = 0.7143 V and a
minimal voltage of Vmin = 0.2857 V. At the load position,
we have a minimum, because the load impedance is smaller
than the wave impedance of the transmission line, as verified
by the theory.

Fig. 3. Voltage distribution along transmission line with ZL = 20Ω in
dependence to resistance per unit length R′.

By considering losses in calculation, the standing wave
pattern changes along the structure. We observe smaller VSWR
at positions near to the source than near to the load. From the
theory of lossy transmission lines, we learnt, the incident wave
from the source to the load is attenuated, and after reflected
by the load back to the source, the reflected wave is again
attenuated. This makes the contribution of the reflected wave
to the standing wave pattern near the source small as compared
to the lossless case. So that for very lossy cases, near to the
source the value of Vmax is practically equal to the value of

Vmin.

B. Voltage distribution along nonhomogeneous transmission
lines

In this section, for verification purposes the cases used in
[9] are simulated by the codes developed here. The trans-
mission line under observation is nonhomogeneous with a
position-varying inductance per unit length, which increases
linearly

L′(z) = L′
o (1 + k z/d)

Meanwhile, the capacitance per unit length decreases inversely
with a similar rhythm as the inductance,

C ′(z) = C ′
o/ (1 + k z/d)

with C ′
o = 66.7 nF, L′

o = 0.167 µH and k =1. The length
of the transmission line is d = 0.20 m. Other parameters are
chosen for lossless conditions, R′(z) = G′(z) = 0.
With the data, the wave impedance becomes

Zo,non =

√
L′
o

C ′
o

(
1 + k

z

d

)
=
(

1 +
z

d

)
50Ω

The simulation is performed with a voltage source VS = 1
V, the frequency f = 1 GHz, and an internal impedance
ZS = 50 Ω. At the end of the nonhomogeneous transmission

Fig. 4. Voltage distribution along nonhomogeneous transmission line for k
= 1 and ZL = 100Ω with different numbers of discretization N .

line, a load ZL = 100 Ω is connected, this is equal to the
wave impedance Zo,non at the end position, z = d. So that we
expect no reflection due to the load.
Fig. 4 gives the voltage distribution along the transmission
line with different numbers of discretization. Theoretically, the
higher the number of the segments, the more accurate the result
obtained. However, the higher the number of the segments, the
larger the computer memory (Random access memory/RAM)
is needed and also the longer the calculation proceeds. By
doubling the discretization from N = 10 to N = 20, we see
the result changes relative significantly. This means, the result
gained with N = 10 is not accurate. Moreover with N = 50
and N = 100 we are not able to distinguish the curve anymore,

2014 2nd International Conference on Information and Communication Technology (ICoICT)

978-1-4799-3580-2/14/$31.00 ©2014 IEEE 257



which means, it converges.
The voltage distribution along the nonhomogeneous transmis-
sion lines is not constant even for matching load. However we
see, the curve changes regularly.
For the second nonhomogeneous case, we use k = 1.5 and
ZL = 150 Ω. For this case, at the far end of the transmission
line, the wave impedance has the value Zo,non = 125 Ω, so
that it is not a matching condition, so we expect a reflection
will happen.
Fig. 5 verifies that a discretization of N = 20 reachs already
the convergence. Moreover, we see in the voltage distribution
a kind of oscillation with a minimal voltage at around z = 10
cm and a maximal voltage at around z = 5 cm.

Fig. 5. Voltage distribution along nonhomogeneous transmission line for k
= 1.5 and ZL = 150 Ω.

C. Low pass filters based on nonhomogeneous transmission
lines

In the last example we take the filter structure designed
in [10]. The low pass filter constitutes of three transmission
line pieces with different wave impedances and length (Fig. 6).
Here, we use the same impedance values as in [10], but the
lengths of the transmission lines are three times longer than in
[10], because we used there a microstrip structure with relative
permittivity εr = 9.

Fig. 6. Low pass filter with two 50 Ω feeding lines, all length dimensions
in mm.

On the source and load sides, two connecting transmission
lines with a wave impedance of 50 Ω are connected, and
we connect an internal impedance ZS = 50 Ω and a load
impedance ZL = 50 Ω, so that both sides are in matching
condition.
Our target here is to analyze the low pass filter structure in
the frequency range between 1 GHz and 8 GHz. We calculate

the reflection factor (S11) and transmission factor (S21) of the
filter. The reflection emerges not due to the load, but rather due
to the nonhomogeneous structure of the transmission line used
(here abrupt changes of the impedances). This can be verified
later, that we have a constant voltage distribution along the
connecting line on the load side. It is indeed, because we have
there just a wave propagating to the load. However along the
connecting line on the source side, we expected a standing
wave pattern, having a maximum and minimum voltage. From
this pattern we can calculate the VSWR, and then the reflection
factor.

Fig. 7. Voltage distribution along the low pass filter structure for at frequency
1.5 GHz.

Fig. 7 shows the voltage distribution along the transmission
line at the frequency 1.5 GHz. The curve on the load side is
constant, this is the voltage wave towards the load with the
value Vt = 0.4942 V. On the source side, we have a standing
wave pattern with Vmax = 0.576 V and Vmin = 0.424 V,
which yields a VSWR of 1.3586 or a reflection factor of 0.1521
(−16.36 dB). On the source side, we can calculate the voltage
wave propagating to the input side of the filter with Vinc =
0.5(Vmax +Vmin) = 0.5 V, so that the transmission factor can
be calculated to t = 0.4942/0.5 = 0.9883 (−0.1022 dB).

Fig. 8. Voltage distribution along the low pass filter structure for at frequency
8 GHz.

Whereas Fig. 8 gives the voltage distribution for the
frequency 8 GHz. At this frequency, the standing wave pattern
is more obvious. The maximal voltage of 0.9621 V and the
minimal voltage of 0.0369 V deliver an VSWR of 26.0749 or a
reflection factor 0.9261 (−0.6668 dB). With the voltage at the
load side Vt = 0.1884 V and the incident voltage on the source
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again Vinc = 0.5(Vmax + Vmin) = 0.5 V, so that the trans-
mission factor can be calculated to t = 0.1884/0.5 = 0.3767
(−8.4801 dB).
We can also check that the condition r2 + t2 = 1 is fulfilled,
which means, that all incident power is converted into reflected
and transmitted power, because we neglected any losses in this
calculation.

Fig. 9. Scattering parameters, solid lines: this work, dashed lines: Sonnet
v.13.

By varying the frequency from 1 GHz to 8 GHz, we can
calculate the reflection and transmission factor over this fre-
quency range. The result is depicted in Fig. 9. As comparison,
we take the low pass filter designed in [10] which is calculated
with Sonnet [11]. We see a very good similarity between both
result.

IV. CONCLUSION

The integral equation method implemented by means of
method of moment yields very good results. Several canonical
problems, such as homogeneous transmission lines with and
without losses, verify this computer simulations. The numeri-
cal results coincide with that yielded by theoretical approach.
Observation of smooth and abruptly changed transmission
lines reveals also this powerful numerical calculation. At last,
abruptly changing nonhomogeneous transmission line, which
presents itself as low pass filter, was considered. Comparing
the results with those obtained by a commercial software
shows very good coincidences.
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